Organic Farming in India

Dr. V. Leela¹, Lavanya .K²

¹ Assistant Professor, Department of Economics, Periyar Arts College - Cuddalore-01
² Ph.D Research Scholar, Department of Economics, Periyar Arts College - Cuddalore-01

Abstract

In the ancient time, agriculture was practiced without the use of artificial chemicals. The use of artificial chemicals such as fertilizers and pesticides came into picture during the mid-19th century. This kind of agricultural practice was causing harm to the environment. With the rapid change in farming practices, organic farming came into existence in the 20th century. Organic farming systems produce lower yields compared with conventional agriculture. However, they are more profitable and environmentally friendly, and deliver equally or more nutritious foods that contain less (or no) pesticide residues, compared with conventional farming. It made use of environment friendly practices by avoiding the use of artificial chemicals and making use of organic matter to raise crops. Organic food is beneficial to human health and the practice of organic farming keeps the environment clean.

Keywords: ecologically, economically, nutritionally, Organic farming
Organic Farming in India

I. INTRODUCTION

The Green Revolution brought about a transformation in India. A starving nation as it was in nineteenth century, India is in a position today, as a result of Green Revolution, to export food produce. Most farmers of the country, with the support of government adapted to this agricultural system. More yield per hectare brought in more money and prosperity which further promoted this system. Green Revolution, however, brought in its wake some formidable consequences like pesticide poisoning, water logging, salinization, soil erosion, water contamination, falling ground water table and the depletion of biodiversity.

Sustainable development has caught the imagination and action all over the world for more than a decade. Sustainable agriculture is necessary to attain the goal of sustainable development. According to the Food and Agriculture Organization (FAO), sustainable agriculture "is the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of environment and conserving natural resources". All definitions of sustainable agriculture lay great emphasis on maintaining an agriculture growth rate, which can meet the demand for food of all living things without draining the basic resources.

Organic farming is one of the several approaches found to meet the objectives of sustainable agriculture. Organic farming is an alternative agricultural system which originated early in the 20th century in reaction to rapidly changing farming practices. Organic farming is a system which avoids or largely excludes the use of synthetic inputs (such as fertilizers, pesticides, hormones, feed, etc.) and to the maximum extent feasible relies upon crop rotations, crop residues, animal manures, off-farm organic waste, mineral grade rock additives and biological system to culture crops. Organic Farming & Agriculture is increasing in India rapidly. Farmers are adopting Organic Farming to produce vegetables, paddy and many other seasonable crops.

Many techniques used in organic farming like inter-cropping, mulching and integration of crops and livestock are not alien to various agriculture systems including the traditional agriculture practiced in countries like India.

Adverse effects of modern agricultural practices not only on the farm but also on the health of all living things and thus on the environment have been well documented all over the world. Application of technology, particularly in terms of the use of chemical fertilizers and pesticides all around us has persuaded people to think aloud. Their negative effects on the environment are manifested through soil erosion, water shortages, salination, soil contamination, genetic erosion, etc. The origin of organic farming goes back, in its recent history, to 1940s. During this period, the path breaking literature on the subject published by J.I. Rodale in the United States, Lady Balfour in England and Sir Albert Howard in India contributed to the cause of organic farming. The farming being practiced for the last three decades in India has increasingly been found non-sustainable. The system is oriented towards high production without much concern for ecology and the very existence of man himself.
Need for the Paper

There are three categories of opinions about the relevance of organic farming for India.

- The first one simply dismisses it as a fad or craze.
- The second category, which includes many farmers and scientists, opines that there are merits in the organic farming but we should proceed cautiously considering the national needs and conditions in which Indian agriculture functions. They are fully aware of the environmental problems created by the conventional farming. But many of them believe that yields are lower in organic cultivation during the initial period and also the cost of labour tends to increase therein.
- The third one is all for organic farming and advocates its adoption wholeheartedly. They think that tomorrow’s ecology is more important than today’s conventional farm benefits.

II. OBJECTIVES

- To understand the need for organic farming in India.
- To assess and evaluate the factors which may facilitate the adoption of organic farming in the country.

III. REVIEW OF LITERATURE

Bemwad Geier (1999) is of the opinion that there is no other farming method so clearly regulated by standards and rules as organic agriculture. The organic movement has decades of experience through practicing ecologically sound agriculture and also in establishing inspection and certification schemes to give the consumers the guarantee and confidence in actuality. Organic farming reduces external inputs and it is based on a holistic approach to farming. He describes the worldwide success stories of organic farming based on the performance of important countries in the west. The magnitude of world trade in organic farming products is also mentioned. To the question of whether the organic farming can feed the world, he says that neither chemical nor organic farming systems can do it; but the farmers can.

Sankaram Ayala (2001) is of the view that almost all benefits of high yielding varieties based farming accrue mostly in the short term and in the long term they cause adverse effects. There is an urgent need for a corrective action. The author rules out organic farming based on the absolute exclusion of fertilizers and chemicals, not only for the present, but also in the foreseeable future. There ought to be an appropriate blend of conventional farming system and its alternatives. The average yields under organic and conventional practices are almost the same and the declining yield rate over time is slightly lower in organic farming. The author also quotes a US aggregate economic model, which shows substantial decreased 5aelds on the widespread adoption of organic farming. Decreased aggregate outputs, increased farm income and increased consumer prices are other results the model gives. While the details about this US analysis are not known, its relevance to India where we already have the lowest yields of a number of crops under the conventional system appears to be open.
Organic Farming in India

Organic farming is in a nascent stage in India. About 2.78 million hectare of farmland was under organic cultivation as of March 2020, according to the Union Ministry of Agriculture and Farmers’ Welfare. This is two per cent of the 140.1 million ha net sown area in the country. A few states have taken the lead in improving organic farming coverage, as a major part of this area is concentrated only in a handful of states. Madhya Pradesh tops the list with 0.76 million ha of area under organic cultivation that is over 27 per cent of India’s total organic cultivation area.

The top three states are Madhya Pradesh, Rajasthan and Maharashtra — account for about half the area under organic cultivation. The top 10 states account for about 80 per cent of the total area under organic cultivation.

Sikkim is the only Indian state to have become fully organic so far. A majority of the states have only a small part of their net sown area under organic farming. Even the top three states that account for the largest area under organic cultivation — Madhya Pradesh, Rajasthan and Maharashtra — have only around 4.9, 2.0 and 1.6 per cent of their net sown area under organic farming respectively. A few states such as Meghalaya, Mizoram, Uttarakhand, Goa and Sikkim have 10 per cent or more of their net sown area under organic cultivation. All these states, except Goa, are in hilly regions.

Union Territories such as Delhi, Dadra and Nagar Haveli and Daman and Diu, Lakshadweep and Chandigarh also have 10 per cent or more of their net sown area under organic cultivation, but their agricultural area is very small. Almost all other states have less than 10 per cent of their net sown area under organic.

Basic Steps of Organic Agriculture

- Conversion of land from conventional to organic.
- Entire surrounding system management to ensure biodiversity and sustainability of the system.
- Crop production with the use of alternative sources of nutrients like crop rotation, residue management, organic manures, and biological inputs.
- Weeds and pests management by better management practices, physical and cultural means and by biological control system
- Maintenance of livestock with the organic concept and also make them an integral part of the entire system.
FARMERS EXPERIENCE IN ORGANIC FARMING
Given below I have give you few solutions based on the farmers experience in organic farming:

Amudham Solutions
This solution acts right away as a catalyst for growth. With very little work we can create this solution within twenty four hours.

- **Ingredients:** 1 liter cattle urine, 1 kg dung, 250 grams jiggery in 10 liters water.
- **Preparation:** Mix the dung thoroughly in water. Add urine and mix well. Powder the jiggery, add to the above, and mix well. Make sure that there are no lumps and cover and set aside the mixture for 24 hours.
- **Usage:** Add one liter of this solution to ten liters water (for a 10% solution) and spray. You must make sure to dilute the solution or else the leaves will get scorched.

This solution helps growth of leaves directly. It also repels insects. Instead of using jiggery, you may use waste fruit in this manner: Tie one kilogram waste fruit into a nylon bag and immerse this in urine solution. Let it soak for five days. This helps the fruit ferment well. Add ten times water to this and spray or add 60-100 liters of irrigation water for one acre.

Coconut-Buttermilk Solutions
This easy-to-make solution helps enhance plant growth, repels insects, and increases resistance to fungal diseases. Also, it enhances flowering in plants. This solution has the same growth enhancing potential as that of cytozime/biozyme. (These are trade names).

- **Ingredients:** 5 liters buttermilk, 1 liter tender coconut, 1-2 coconuts, 500ml-1liter juice from waste fruit (or 500 gms – 1kg waste fruit, if extracting juice is not easy).
- **Preparation:**
 - Break the coconuts and collect the coconut water in a vessel.
 - Add buttermilk to this and mix well.
 - Grate the coconuts, add to the mixture, and let it soak.
 - Or, mix grated coconut and fruit (if not in juice form), put the mixture in a nylon mesh, tie it, and immerse it in the buttermilk solution.
 - This solution ferments well in seven days.
 - The contents of the nylon bag could be reused a few times in subsequent solutions by adding a small quantity of grated coconut every time.
- **Usage:** Mix ten liters water with 300-500 solution and spray. This can also be used in irrigation at the rate of 5-10 liters per acre.
3. Fish Extract (Fish Amino Acid)

Fish extract helps us give green manure in the most natural way. This is widely used by organic farmers in Japan, Korea, etc.

- **Ingredients:** 1 kg native fish, 1 kg jiggery.
- **Preparation:**

 - Remove the fish intestines and chop into fine pieces. (Using intestines is not harmful but it smells bad).
 - Powder the jiggery and add it.
 - Add the two to broad-mouthed glass jar (best) or plastic jar that is just the right size (not too big), cover the jar with the lid (cap), tighten it, and mix it well by shaking the jar.
 - Don’t add water.
 - In thirty days this will be fermented.
 - Filter it using nylon mesh to get 300-500 ml solution changed into honey-like syrup.
 - This is a great nutrient for the plants.

- **Usage:** Add 5 ml of this with one liter water for spraying. It could also be mixed with irrigation water (but it should be used in bulk minimum 5kg of fish and 5kg jiggery).

4. Egg Extract (Egg Amino Acid)

- **Ingredients:** 5 eggs, juice of 10 – 15 lemons, and 250 gms jiggery.
- **Preparation:**

 - Place the eggs in a jar and pour lemon juice in it until the eggs are completely immersed.
 - Keep it for ten days with lid closed.
 - After ten days smash the eggs and prepare the solution.
 - Add equal quantity of thick jiggery syrup to it and set aside for ten days.
 - The solution will then be ready for spraying.
 - This is a great nutrient for the plants just like Fish Extract and will boost plant growth.
 - It was originally conceived by Ms.Veeraiachinnammal of Theni district (TN) as medicine for asthma.

- **Usage:** Add one to two ml of this with one liter water for spraying.
5. Solutions for Disease Prevention:

i) Fungal infection and leaf spot disease:

- Ingredients: (a) 3-5 kg aloevera, (b) any two of the following: 3-5 kg custard apple leaves, 3-5 kg bougainvilla leaves, 3-5 kg lantana camara leaves, 3-5 kg papaya leaves, (c) 100 gms turmeric powder, (d) 250-500 gms pseudomonas and (e) 10 liters archae bacterial solution.
- Preparation:
 - Pound all the leaves, add enough water to immerse them and boil it as explained above.
 - Prepare 50 liters solution the solution will have a dark colour.
 - Add turmeric powder to it.
 - Let it ferment for about 12 hours.
 - At the same time, mix the archaebacterial solution and pseudomonas and set aside for 12 hours.
- Usage: Mix the above two solutions, add sufficient water to bring the total to 100 liters, and spray. You will see long eye-shaped spots on leaves during the early stages of this disease. At the center of each of these spots are the fungal spores that cause this disease. As the disease progresses the spots grow larger and eventually all the spots combine into one. The leaves turn brown/yellow and ultimately wilt.

ii) Blast and leaf blight diseases

- Ingredients: 3-5 kg aloevera, 200 gms ginger, 3-5 kg pudhina, savukku or lantana camara leaves, 100 gms turmeric powder, 500-1000 gms pseudomonas fluorescence and 10 liters archaebacterial solution.
- Preparation:
 - Add enough water to immerse the above ingredients.
 - Boil it and let it cool down.
 - Add turmeric powder as explained earlier.
 - In a separate container take the archae solution, add Pseudomonas fluorescence, and keep aside for 12-24 hours.
- Usage: Mix the above two solutions, add sufficient water to bring the total to 100 liters and spray.
iii) Bacterial diseases:

- Ingredients: (a) 3-5 kg aloe vera, (b) 3-5 kg tender leaves of two of the following: Bamboo, Pudhina, Savukku, Thulasi or Lantana camara, (c) 100 gms turmeric powder, (d) 250-500 gms Pseudomonas fluorescence, (e) 10 liters Archaebacterial solution.

- Preparation:
 - Prepare 50 liters solution using boiling method.
 - At the same time, mix the Archaebacterial solution and pseudomonas and set aside for 12 hours.

- Usage: Mix the above two solutions, add sufficient water to bring the total to 100 liters and spray.

iv) Powdery mildew:

- Ingredients: (a) 3-5 kg aloe vera, (b) 10-12 kg tender leaves of one of the following: bamboo, savukku or Lantana camara, (c) 100-200 gms turmeric powder, (d) 250-500 gms Pseudomonas fluorescence, (e) 10 liters archaebacterial solution.

- Preparation:
 - Prepare 50 liters solution using the boiling method.
 - At the same time, mix the archaebacterial solution and pseudomonas and set aside for 12 hours.

- Usage: Mix the above two solutions, add sufficient water to bring the total to 100 liters and spray. When we spray the above for prevention, the above-mentioned quantities of Pseudomonas is enough. Under unfavorable climatic conditions fungal diseases, bacterial diseases and powdery mildew attack will be severe. In that case increase the quantity of pseudomonas to 1-2 kg to achieve the knock-down effect. It should be sprayed 2 times in 7-days interval; the third spray should be after ten days. This inevitably raises the cost of cultivation. But, the cost is still much less compared to the use of chemical pesticides. Besides, this organic method has no ill effects on our health or on the environment.

IV. CERTIFICATION OF ORGANIC PRODUCTS

- The aim of organic certification is, therefore, to

 (a) Provide an identifiable label (a logo or a symbol).

 (b) Give an assurance to the consumers that the product is truly organic. It is widely recognised the world over that the certification of organic products should be based on the following principles:
Dr. V. Leela, Lavanya K

- Organic production and processing standards should be clearly laid down.
- The conformation of production and processing to these stands must be verified.
- Organic labels should be permitted only to those produces, which are found conforming to the set standards.

Tamil Nadu Organic Certification Department

- Tamil Nadu Organic Certification Department (TNOCD) is aimed at creating an ecosystem, which can achieve sustainable productivity without the use of artificial external inputs such as agro chemicals, fertilizers and pesticides. TNOCD was established by the Government of Tamilnadu in the year 2007 to carryout inspection and certification of organic production system in accordance with NPOP (National Programme for Organic Production), which was launched by Government of India in the year 2000 and notified in October 2001 under the Foreign Trade and Development Act (FT D&R Act).
- Tamil Nadu Organic Certification Department is carrying out the certification of Agricultural Organic Crop Production, Processing and Trade under National Programme for Organic Production (NPOP). The TNOCD is accredited by APEDA (Agricultural and Processed Food Products Exports Development Authority), New Delhi, Ministry of Commerce and Industry, Government of India. The accreditation number allotted to Tamil Nadu Organic Certification Department is NPOP/NAB/0019. Organic Certification carried out by this Department is accepted internationally and is on par with standards of European Union and Swiss Organic Farming Ordinance etc.
- Tamil Nadu Organic Certification Department also imparts free training to registered organic farmers on National Standards for Organic Production. During the year 2018-19, 31687 acres of land have been registered under Organic Certification by 4768 farmers in Tamil Nadu.

Promoting Organic Farming Though Different Schemes

India’s options in finding out an alternative method to the conventional farming are limited. The World Trade Organization (WTO) deadline for banning exports of vegetables and horticulture products based on inorganic farming will expire in 2005. Sensing the importance, the Central and state governments have taken several initiatives to popularize organic farming in the country. The Government of India provides assistance for promoting organic farming across the country though different schemes.

1. **Paramparagat Krishi Vikas Yojana (PKVY)**

 Paramparagat Krishi Vikas Yojana promotes cluster based organic farming with PGS (Participatory Guarantee System) certification. Cluster formation, training, certification and marketing are supported under the scheme. Assistance of Rs. 50,000 per ha /3 years is provided out of which 62 percent (Rs. 31,000) is given as incentive to a farmer towards organic inputs.
2. Mission Organic Value Chain Development for North Eastern Region (MOVCDNER)

The scheme promotes third party certified organic farming of niche crops of north east region through Farmer Producer Organizations (FPOs) with focus on exports. Farmers are given assistance of Rs 25,000 per hectare for three years for organic inputs including organic manure and bio-fertilisers among other inputs. Support for formation of FPOs, capacity building, post-harvest infrastructure up to Rs 2 crore are also provided in the scheme.

3. Capital Investment Subsidy Scheme (CISS) under Soil Health Management Scheme

Under this scheme, 100 percent assistance is provided to state government, government agencies for setting up of mechanised fruit and vegetable market waste, agro waste compost production unit up to a maximum limit of Rs 190 lakh per unit (3000 Total Per Annum TPA capacity). Similarly, for individuals and private agencies assistance up to 33 percent of cost limit to Rs 63 lakh per unit as capital investment is provided.

4. National Mission on Oilseeds and Oil Palm (NMOOP)

Under the Mission, financial assistance at 50 percent subsidy to the tune of Rs. 300 per hectare is being provided for different components including bio-fertilisers, supply of Rhizobium culture, Phosphate Solubilising Bacteria (PSB), Zinc Solubilising Bacteria (ZSB), Azatobacter, Mycorrhiza and vermi compost.

5. National Food Security Mission (NFSM)

Under NFSM, financial assistance is provided for promotion of bio-fertiliser (Rhizobium/PSB) at 50 percent of the cost limited to Rs 300 per hectare.

As per international resource data from Research Institute of Organic Agriculture (FiBL) and the International Federation of Organic Agriculture Movements (IFOAM) Statistics 2020, India stands at 9th position in terms of certified agricultural land with 1.94 million hectare (2018-19).

Comparative Data in Regard to Organic Cultivation with other Countries

<table>
<thead>
<tr>
<th>S. No.</th>
<th>State</th>
<th>Position</th>
<th>Area under organic certification (in million ha.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>China</td>
<td>3rd</td>
<td>3.14</td>
</tr>
<tr>
<td>2</td>
<td>USA</td>
<td>7th</td>
<td>2.02</td>
</tr>
<tr>
<td>3</td>
<td>India</td>
<td>9th</td>
<td>1.94</td>
</tr>
<tr>
<td>4</td>
<td>Brazil</td>
<td>12th</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Source: Agritech Portugal, Organic farming
Advantages of Organic Farming

➢ One major advantage of organic farming is its wide-ranging effect on health and hygiene of the community and the fillip it gives to an unadulterated lifestyle relying on science and technology. It protects farmers from disastrous effects of the spraying of chemical pesticides on their health.

➢ Organic farming not only checks erosion and pollution of soil, thus preserving its productivity which would be disastrously affected by the use of urea and pesticides but also improves soil structure and fertility.

➢ Organic Farming can also be practiced with zero budget formula using cow dung, cow urine and other natural pesticides. The idea is being promoted by Sri Sri Institute of Agricultural Sciences and Technology Trust (2015). It not only promotes self-employment among poor and marginal young farmers but also saves them from the vicious circle of costly inputs and nonpayment of debts.

➢ Economy of water is another great advantage which would help water table rise. It also increase the carbon levels of soil by 25 per cent and in turn increases the water holding capacity of soil between 2 and 17 per cent which makes it more useful for the farmers of drought prone areas (Martin, 2013).

➢ It helps combat climate change by cutting down greenhouse gas emissions like Nitrous Oxide emitting from fertilizers and enhancing carbon sequestration (Food and Agriculture Organization of the United Nations, 2015). The global warming potential of one ton of Nitrous Oxide is equivalent to 265-298 times that of CO2 for a 100-year timescale (United States Environmental Protection Agency, 2015).

➢ Rotation of crops helps in providing nutrients free of cost apart from promoting biodiversity by maintaining nutrient cycle.

➢ Organic farming generally requires more labour for on farm activities than conventional farming, hence generates more jobs. Rotation of crops, non-chemical pest control, weeding, mixed farming, processing, cleaning of grain necessitated by damage caused by insects and direct marketing etc. need more hands or manual labour (Jansen, 2000). Women employment, especially in rural areas can also be promoted through this.

➢ As compared to non-organic, fresh organic food contains, on an average, 50 percent more vitamins, minerals, enzymes and other micro nutrients. Organic food has relatively larger percentage of constituents like iron, dry matter, copper, calcium, magnesium, essential amino acids, manganese, potassium, protein etc. A comparative study program conducted at IIT, New Delhi under Desi Ahaar Project found that the samples of soil seed plant and crop have higher nutritional value, flavour and taste than commercial samples (Agricare, 2015). Moreover, there are many harmful substances found in non-organic/processed food, which may cause many diseases.
Cabinet Approves Policy on Promotion of City Compost

The Union Cabinet, chaired by the Prime Minister Shri Narendra Modi has given its approval for a Policy on Promotion of City Compost. Under the policy, a provision has been made for Market development assistance of Rs. 1500 per tonne of city compost for scaling up production and consumption of the product. Market development assistance would lower MRP of city compost for farmers. Compost from city garbage would not only provide carbon and primary/secondary nutrients to soil but also help in keeping the city clean.

Eco-Mark standard for City Compost would ensure that environment friendly quality product reaches the farmers. Composting can reduce the volume of waste to landfill/dumpsite by converting the waste into useful by-products. This also prevents production of harmful greenhouse gases (especially methane) and toxic material that pollutes groundwater apart from polluting the environment. City Waste composting would also generate employment in urban areas. Fertilizer companies and marketing entities will also co-market City Compost with chemical fertilizers through their dealers' network. The companies will also adopt villages for promoting the use of compost.

Government Departments and Public Sector undertakings will also use City Compost for their horticulture and related uses. Concerned Ministry/Department will carry out IEC campaigns to educate farmers on the benefits of city compost and will take steps to increase setting up of compost plants across all States. The Agricultural Extension Machineries including KVKs of ICAR will also make special efforts in this regard. Agriculture Universities and KVKs will also take up field demonstration activities using City compost for which D/o Agriculture, Cooperation and Farmers Welfare will assign targets to them. A joint mechanism will be set up by Department of Fertilizers, Ministry of Urban Development and Department of Agriculture to monitor and facilitate availability of adequate quantity of City Compost at terms mutually agreeable between compost manufacturers and Fertilizer Marketing companies. They will also be authorised to resolve any coordination related issue that may arise.

Initially, marketing and promotion of city compost is proposed to be done through the existing fertilizer companies. In due course, compost manufacturers and other marketing entities recognized by the concerned State Government may also be included for the purpose with the approval of Department of Fertilisers. The market development assistance shall be routed through the entity which is marketing it.

Environmental Impact

Organic farming has a protective role in environmental conservation. It is believed that organic farming is less harmful to the environment as it does not allow synthetic pesticides, most of which are potentially harmful to water, soil, and local terrestrial and aquatic wildlife. In addition, organic farms are better than conventional farms at sustaining biodiversity, due to practices of crop rotation. Organic farming improves physico-biological properties of soil consisting of more organic matter, biomass, higher enzyme, better soil stability, enhanced water percolation, holding capacities, lesser water, and wind erosion compared to conventionally farming soil.
Organic farming uses lesser energy and produces less waste per unit area or per unit yield. In addition, organically managed soils are of greater quality and water retention capacity, resulting in higher yield in organic farms even during the drought years.

Socioeconomic Impact

Organic cultivation requires a higher level of labour, hence produces more income-generating jobs per farm. According to Winter and Davis (2006), an organic product typically costs 10%–40% more than the similar conventionally crops and it depends on multiple factors both in the input and the output arms. On the input side, factors that enhance the price of organic foods include the high cost of obtaining the organic certification, the high cost of manpower in the field, lack of subsidies on organics in India, unlike chemical inputs. But consumers are willing to pay a high price as there is increasing health awareness. Some organic products also have short supply against high demand with a resultant increase in cost.

Biofertilizers and pesticides can be produced locally, so yearly inputs invested by the farmers. As the labours working in organic farms are less likely to be exposed to agricultural chemicals, their occupational health is improved. Organic food has a longer shelf life than conventional foods due to lesser nitrates and greater antioxidants. Nitrates hasten food spoilage, whereas antioxidants help to enhance the shelf life of foods. Organic farming is now an expanding economic sector as a result of the profit incurred by organic produce and thereby leading to a growing inclination towards organic agriculture by the farmers.

IV. CONCLUSION

Organic farming yields more nutritious and safe food. The popularity of organic food is growing dramatically as consumer seeks the organic foods that are thought to be healthier and safer. Thus, organic food perhaps ensures food safety from farm to plate. The organic farming process is more eco-friendly than conventional farming. Organic farming keeps soil healthy and maintains environment integrity thereby, promoting the health of consumers. Moreover, the organic produce market is now the fastest growing market all over the world including India. Organic agriculture promotes the health of consumers of a nation, the ecological health of a nation, and the economic growth of a nation by income generation holistically. India, at present, is the world’s largest organic producers and with this vision, we can conclude that encouraging organic farming in India can build a nutritionally, ecologically, and economically healthy nation in near future.
V. REFERENCES

4. TNAU Agritech Portal, Organic farming
5. https://agritech.tnau.ac.in/org_farm/orgfarm_cropproduction_plantprotection.html
6. https://agritech.tnau.ac.in/org_farm/pdf/Cabinet%20approves%20policy%20on%20Promotion%20of%20City%20Compost.pdf